УДК 621.762.4

EDN: KWIUOU

Бабич И. Н.

Луганский государственный университет им. В. Даля E-mail: b.i.n.2017@mail.ru

СТРУКТУРА И СВОЙСТВА ПОРОШКОВОГО МЕДНО-ТИТАНОВОГО МАТЕРИАЛА ПОСЛЕ УГЛОВОГО ПРЕССОВАНИЯ

Работа посвящена исследованию структуры и физико-механических свойств порошкового медно-титанового материала после углового прессования в штампе с каналами различного поперечного сечения. Установлено, что при изменении поперечного сечения образца с круга на прямоугольное сечение происходит уменьшение неравномерности напряженного состояния и выравнивание плотности. Получены ярко выраженная текстура деформации, высокие прочностные свойства вдоль оси образца и несколько меньшие в поперечном сечении.

Ключевые слова: угловое прессование, медно-титановый материал, плотность, величина зерна, микротвердость, напряженное состояние, свойства.

Одной из задач обработки давлением является получение изделий, отличающихся высокими прочностными свойствами, повышенной повторяемостью и стабильностью этих свойств [1]. Такие требования резко усложняющимися обусловлены условиями работы конструкций: высокими напряжениями и скоростями их приложения, сложными схемами напряженного сонеобходимостью уменьшения стояния, массы конструкции и повышения долговечности. Сложные механические схемы деформации используют для снижения неравномерности деформации и устранения разрушений, управления структурой и физико-механическими свойствами материала [2]. Перспективными для изготовления изделий являются новые способы интенсивной пластической деформации: равноканальное угловое прессование [3] и винтовая экструзия [4], позволяющие достичь высоких прочностных свойств за счет накопления в заготовках больших пластических деформаций.

Целью работы является исследование структуры и физико-механических свойств порошкового медно-титанового материала после углового прессования в штампе с каналами различного поперечного сечения.

Для экспериментального исследования изготовлены образцы из порошковой меди ПМС-1 (ГОСТ 4960-75) легированной титаном ВТ1-0 (ОСТ 1.90013-81) путем добавки в шихту 0,5 % по массе. Номинальная величина частиц порошка 0,063 мм, форма — дендритная, что в значительной степени увеличивает реакционную способность. Смешивание порошков меди и титана производили механическим методом. Насыпная плотность порошковой смеси титана составила $1.65 \, \text{г/см}^3$ меди И (ГОСТ 19440-74). Прессуемость определяли в соответствии с ГОСТ 25280-82. Плотность образцов, рассчитанная по формуле аддитивности, составила 8,89 г/см³.

Образцы изготавливали по технологии, включающей операции компактирования, спекания, деформирования по схеме углового прессования с последующим исследованием структуры и физико-механических свойств (табл. 1). Двухстороннее компактирование цилиндрических образцов по двум режимам осуществляли на гидравлическом прессе силой 1000 кН. Спекание выполняли в среде генераторного газа (состав газа: 72 % H₂, 21 % CO, 5,5 % CO₂, 1,5 % H₂O) по ступенчатому режиму. Усадка после спекания по первому режиму составила 13,62 %, по второму — 7,95 %.

Плотность, Противодавление, Давление, Режим Операция Размеры, мм г/см³ МΠа МΠа 1 Компактирование Ø12,56×46,60 6,42 Спекание Ø12,0×44,70 7,68 Угловое прессование 10×13×37,50 8,79 1319 95 2 Ø12,75×54,30 7.64 Компактирование Ø12,45×53,20 8,19 Спекание 10×13×35,50 1696 110 Угловое прессование 8,89

Режимы обработки медно-титанового материала

Угловое прессование с различным противолавлением выполняли В штампе, представленном на рисунке 1. В качестве смазки применяли дисульфид молибдена, позволивший понизить коэффициент трения до 0,05. Основное отличие штампа состоит в конструкции матрицы, в которой вертикальный входной канал имеет круглое сечение, а горизонтальный (выходной) канал — прямоугольное сечение. При этом радиус вертикального канала у основания соответствует радиусу исходной прессовки. Тогда на первой стадии происходит уплотнение материала, а затем истечение в угловой канал [5]. Такая конструкция матрицы обеспечивает уменьшение мертвой зоны и неравномерности напряженного состояния в очаге деформации и по всему объему образца.

Плотность образца в целом и по зонам деформации определяли методом гидростатического взвешивания (ГОСТ 25281-82). Измерение микротвердости осуществляли при помощи микротвердомера ПМТ-3 (ГОСТ 9450-76). Определение твердости выполняли по методу Роквелла (ГОСТ 9013-59). Микроструктуру после спекания и углового прессования изучали помощью электронного микроскопа с РЭММА-102, что позволило оценить влияние температуры спекания пористого тела на взаимную диффузию компонентов медь — титан. В работе приведены среднестатистические данные обработки результатов эксперимента.

На рисунке 2 показаны образцы, полученные из медно-титанового материала угловым прессованием с противодавлением 95 МПа (рис. 2, a) и 110 МПа (рис. 2, δ). При противодавлении 95 МПа (I режим) на поверхности образца видны дефекты в виде ребристости и его пористость составила 1,25 %.

Таблица 1

Для устранения ребристости и достижения плотности, близкой к теоретической, противодавление увеличено до 110 МПа, подобно рекомендациям Я. М. Охрименко для ковки малопластичных сталей [6]. При противодавлении 110 МПа (II режим) получен бездефектный образец с пористостью 0,7 %.

В структуре образцов после спекания видны зерна меди, частицы титана и поры (рис. 3). Разнозернистость структуры меди объясняется неравномерным развитием статической рекристаллизации при спекании вследствие неоднородного напряженного состояния, которое характерно для прессования порошковой смеси в закрытой матрице [7].

Среднестатистическая величина зерна меди составляет 21–22 мкм, размер частиц титана — 55 мкм, в то время как номинальный размер частиц порошка титана ВТ1-0 составляет 63 мкм. Титан является модификатором, сдерживающим рост зерен при статической рекристаллизации.

В процессе спекания в результате поверхностной и объемной диффузии наблюдается образование диффузионной зоны между компонентами порошкового пористого образца (рис. 3). Анализ концентрации титана и меди показывает, что титан в медь диффундирует в меньшей степени. Об этом свидетельствует его низ-

кое содержание в диффузионной зоне, которое составляет в среднем 0,96 %, в то время как содержание меди в титане равно 51,3 %. Различие в диффузии меди и титана объясняется их парциальными коэффициентами диффузии. Парциальный коэффициент диффузии меди больше, чем титана [8], и медь преимущественно диффундирует в титан. Разная их величина обуславливает большую активность частиц меди при спекании и последующих деформационных процессах.

Анализ микроструктуры вдоль оси прессования на боковой части образца показал ярко выраженную текстуру деформации: зерна меди и частицы титана вытягиваются вдоль направления деформирования (рис. 4). При этом в зоне под пуансоном текстура проявляется в меньшей степени.

1 — болт, 2 — скоба, 3 — бандаж, 4 — матрица, 5 — верхний пуансон, 6 — прессовка, 7 — противодавление, 8 — нижняя плита

Рисунок 1 — Штамп для углового прессования

Рисунок 2— Образцы, полученные по угловому прессованию: а — первый режим; б — второй режим

Рисунок 3 — Микроструктура после спекания: а — ×500; б— ×4000

Рисунок 4 — Микроструктура после углового прессования по II режиму: а — зона под пуансоном, б — средняя зона; в — зона со стороны противодавления

При угловом прессовании с противодавлением 95 МПа плотность изменяется неравномерно, достигая максимальной величины в средней зоне образца (рис. 5, а). При противодавлении 110 МПа распределение плотности по объему образца более равномерное. Наибольшая плотность, равная 8,89 г/см³, получена в средней зоне образца. При этом пористость образца составила всего 0,7 %, т. е. плотность близка к теоретической. Аналогично изменяется и величина зерна (рис. 5, б). Характер изменения величины зерна в обоих случаях подобен. Однако при большем противодавлении величина зерна меньше и находится в пределах 3,8-4,2 мкм.

Распределение напряжений при угловом прессовании оценивали по измерению микротвердости на боковой поверхности образца (рис. 6). Для углового прессования характерна схема всестороннего неравномерного сжатия. Применение цилиндрического входного канала и переход его в

прямоугольное сечение позволило уменьшить неравномерность напряженного состояния. В зоне под пуансоном наблюдается мало отличающаяся микротвердость частиц независимо от разной исходной пористости прессовки. В дальнейшем микротвердость при большем противодавлении увеличивается. При угловом прессовании по второму режиму микротвердость колеблется в пределах 1200-1250 МПа, достигая максимальных значений в средней зоне, для которой характерна максимальная плотность. Микротвердость титановых включений по всем сторонам образца практически одинакова и соответствует среднестатистическому значению 1151 МПа.

Для оценки механических свойств после углового прессования измеряли твердость и выполняли сжатие образца, вырезанного из средней зоны вдоль оси. При угловом прессовании по второму режиму получено равномерное распределение твердости с некоторым уменьшением со стороны противо-

давления (рис. 7). По первому режиму твердость резко уменьшается в связи с недостаточным противодавлением.

При испытании на сжатие образцов, изготовленных по второму режиму, получен предел текучести 451,4 МПа, предел прочности 677,2 МПа, что в 1,5 раза больше свойств деформированного меднотитанового материала, полученного по другим механическим схемам деформации.

Рисунок 5 — Изменение плотности (а) и размера зерна (б) по боковому сечению образца при противодавлении: 1, 1' — 95 МПа; 2, 2' — 110 МПа

Рисунок 6 — Микротвердость медной основы: 1 — I режим; 2 — II режим

Рисунок 7 — Распределение твердости по длине образца: 1 — I режим, 2 — II режим

Выполнены экспериментальные исследования влияния углового выдавливания на структуры и свойства порошкового медно-титанового материала. Получено, что при изменении поперечного сечения образца с круга на прямоугольное сечение в процессе углового прессования происходит уменьшение неравномерности напряженного состояния и выравнивание плотности. Получена ярко выраженная текстура деформации, высокие прочностные свойства вдоль оси образца и несколько меньшие в поперечном сечении. Полученные результаты исследований рекомендуется использовать при разработке новых механических схем деформирования для уменьшения неравномерности напряженного состояния.

Список источников

1. Андреев А. П., Шибаков В. Г., Волков Д. А. Производство высокопрочных деталей в машиностроении // КШП. 2009. № 8. С. 35–39. EDN KWAFBB

2. Андреев А. П., Шибаков В. Г., Волков Д. А. Технологические возможности интенсивной пластической деформации выдавливанием и имитационное моделирование процесса // КШП. 2008. № 10. С. 27–30. EDN JUXJWL

3. Сегал В. М., Резников В. И., Копылов В. И. Процессы пластического структурообразования металлов. Минск : Наука и техника, 1994. 232 с.

4. Бейгельзимер Я. Е., Варюхин В. Н., Орлов Д. В. Винтовая экструзия — процесс накопления деформаций. Донецк : Фирма ТЕАН, 2003. 87 с.

5. Габриелов И. Л., Дорошкевич Е. А. Порошковая металлургия. Рига : ЛАИНИТИ, 1976. 200 с.

6. Охрименко Я. М. Технология кузнечно-штамповочного производства. М. : Машиностроение, 1976. 560 с.

7. Колеров О. К. Особенности первичной рекристаллизации и ее роль при спекании металлических порошков // Порошковая металлургия. 1973. № 3. С. 18–22. EDN UKMIOZ

8. Рябичева Л. А., Смоляк В. В. Анализ эволюции микроструктуры порошковой пористой заготовки при РКУ-прессовании // Ресурсозберігаючі технології виробництва та обробки матеріалів у машинобудуванні : зб. наук. пр. Луганськ : Вид-во СНУ ім. В. Даля, 2011. № 1 (12) С. 148–155. EDN ZOFYTR

© Бабич И. Н.

Рекомендована к печати д.т.н., проф., зав. каф. ПиХЛ ЛНУ им. В. Даля Гутько Ю. И., к.т.н., проф. каф. МТ ДонГТУ Денищенко П. Н.

Статья поступила в редакцию 16.02.2024.

Сведения об авторах

Бабич Ирина Николаевна, канд. техн. наук, доцент каф. материаловедения Луганский государственный университет им. В. Даля, г. Луганск, Луганская Народная Республика, Россия, e-mail: b.i.n.2017@mail.ru

Babich I. N. (Lugansk State University named after V. Dahl, Lugansk, Lugansk People's Republic, Russia, e-mail: b.i.n.2017@mail.ru)

STRUCTURE AND PROPERTIES OF POWDER COPPER-TITANIUM MATERIAL AFTER ANGULAR PRESSING

The work is focused on studying the structure and physical-mechanical properties of powder copper-titanium material after angular pressing in a die with different cross-section channels. It has been determined that when the cross-section of pattern is changed from a circle to a rectangular

МЕТАЛЛУРГИЯ

section the non-uniformity of stress state is reduced and the density is equalized. A pronounced deformation texture, high strength properties along the specimen axis and slightly lower ones in the cross section were obtained.

Key words: angular pressing, copper-titanium material, density, grain size, microhardness, stress state, properties.

References

1. Andreev A. P., Shibakov V. G., Volkov D. A. Production of high-strength mechanical engineering parts. [Proizvodstvo vysokoprochnyh detalej v mashinostroenii]. KSHP. 2009. No. 8. Pp. 35–39. (rus) EDN KWAFBB

2. Andreev A. P., Shibakov V. G., Volkov D. A. Technological possibilities of severe plastic deformation by extrusion and process simulation modelling [Tekhnologicheskie vozmozhnosti intensivnoj plasticheskoj deformacii vydavlivaniem i imitacionnoe modelirovanie processa]. KSHP. 2008. No. 10. Pp. 27–30. (rus) EDN JUXJWL

3. Segal V. M., Reznikov V. I., Kopylov V. I. Processes of plastic structuring of metals [Processy plasticheskogo strukturoobrazovaniya metallov]. Minsk : Nauka i tekhnika, 1994. 232 p. (rus)

4. Bejgel'zimer Ya. E., Varyuhin V. N., Orlov D. V. Screw extrusion is a process of strain accumulation [Vintovaya ekstruziya — process nakopleniya deformacij]. Donetsk : Firma TEAN, 2003. 87 p. (rus)

5. Gabrielov I. L., Doroshkevich E. A. Powder Metallurgy [Poroshkovaya metallurgiya]. Riga : LAINITI, 1976. 200 p. (rus)

6. Ohrimenko Ya. M. Forging and stamping production technology [Tekhnologiya kuznechnoshtampovochnogo proizvodstva]. M. : Mechanical Engineering, 1976. 560 p. (rus)

7. Kolerov O. K. Features of primary recrystallisation and its role in sintering of metal powders [Osobennosti pervichnoj rekristallizacii i ee rol' pri spekanii metallicheskih poroshkov]. Powder Metallurgy. 1973. No. 3. Pp. 18–22. (rus) EDN UKMIOZ

8. Ryabicheva L. A., Smolyak V. V. Analysis of microstructure evolution of porous billet during RKU-pressing [Analiz evolyucii mikrostruktury poroshkovoj poristoj zagotovki pri RKU-pressovanii]. Resource-saving technologies of production and forming materials in mechanical engineering : Collection of scientific works. Lugansk : Publishing House of ENU named after V. Dahl, 2011. No. 1 (12). Pp. 148–155. (rus) EDN ZOFYTR

INFORMATION ABOUT THE AUTHOR

Babich Irina Nikolaevna, PhD in Engineering, Assistant Professor of the Department of Material Science

Lugansk State University named after V. Dahl Lugansk, Lugansk People's Republic, Russia e-mail: b.i.n.2017@mail.ru